Построение кривой, заданной уравнением в полярной системе координат

М. В. Лыткин

Руководитель: Е. А. Максименко

Южный федеральный университет

13 апреля 2008 г.

План

- 📵 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
 - Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

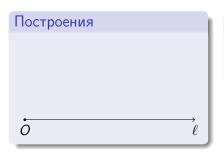
План

- 📵 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
- Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

Построения <u>o</u>

Пояснения

Возьмём на плоскости точку O. Эту точку будем называть полюсом.

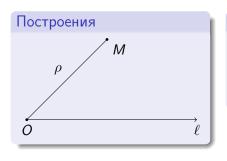


Пояснения

Проведём из точки O луч ℓ , который будем называть *полярной осью*.

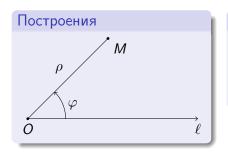
Пояснения

Пусть на плоскости дана точка M.



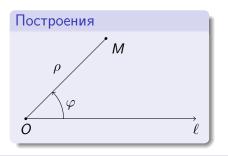
Пояснения

Соединим точки O и M отрезком. Длину отрезка OM обозначим через ρ и будем называть полярным радиусом.



Пояснения

Угол φ называется полярным углом (отсчитывается от полярной оси, против хода часовой стрелки и берётся со знаком «+»).



Вывод

Каждой точке плоскости мы поставили в соответствие пару чисел (ρ, φ) , а значит ввели систему координат на плоскости, которую будем называть полярной. Пару (ρ, φ) будем называть полярными координатами точки M.

Замечание 1

Полярный угол φ можно отсчитывать по ходу часовой стрелки, но тогда он берётся со знаком «—».

Замечание 1

Полярный угол φ можно отсчитывать по ходу часовой стрелки, но тогда он берётся со знаком «—».

Замечание 2

Любая точка, кроме полюса, в полярной системе координат имеет бесконечно много координат вида $(
ho, \varphi+2\pi n), n\in \mathbb{Z}.$

Замечание 1

Полярный угол φ можно отсчитывать по ходу часовой стрелки, но тогда он берётся со знаком «—».

Замечание 2

Любая точка, кроме полюса, в полярной системе координат имеет бесконечно много координат вида $(
ho, \varphi+2\pi n), n\in \mathbb{Z}.$

Замечание 3

Для полюса ho=0, а угол arphi не определён.

Замечание 1

Полярный угол φ можно отсчитывать по ходу часовой стрелки, но тогда он берётся со знаком «—».

Замечание 2

Любая точка, кроме полюса, в полярной системе координат имеет бесконечно много координат вида $(\rho, \varphi + 2\pi n), n \in \mathbb{Z}$.

Замечание 3

Для полюса ho= 0, а угол arphi не определён.

Замечание 4

Кривую в полярной системе координат можно задать уравнением вида ho=
ho(arphi), где $arphi:
ho(arphi)\geq 0.$

План

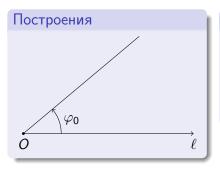
- 📵 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
- Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

Пояснения

На плоскости задана полярная система координат.

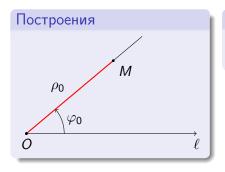
Пояснения

Даны полярные координаты $(
ho_0, arphi_0)$ некоторой точки M. Построим эту точку.



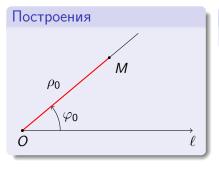
Пояснения

Из полюса проведём луч так, что угол между полярной осью и этим лучом, откладываемый против часовой стрелки, имеет радианную меру φ_0 .



Пояснения

На построенном луче от полюса отложим отрезок OM длины ho_0 .



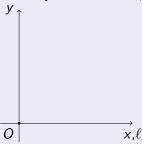
Пояснения

Мы построили искомую точку M.

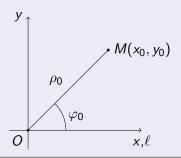
План

- 📵 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
- Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

Совместим полярную систему координат с правой прямоугольной декартовой так, что бы полюс полярной системы координат совпал с начальной точкой в правой прямоугольной декартовой, а полярная ось совпала с положительной полуосью оси абсцисс.



Выберем произвольную точку M на плоскости. И пусть в полярной системе координат она имеет координаты (ρ_0, φ_0) , а в правой прямоугольной декартовой (x_0, y_0) .



Из определения косинуса и синуса следуют формулы перехода от полярной системы координат к правой прямоугольной декартовой:

$$\begin{cases} x = \rho \cos \varphi; \\ y = \rho \sin \varphi. \end{cases}$$

Несложно вывести обратные формулы:

$$\left\{ \begin{array}{l} \rho = \sqrt{x^2 + y^2}; \\ \varphi = \left[\begin{array}{l} \arccos \frac{x}{\sqrt{x^2 + y^2}} + 2\pi k, y \geq 0, k \in \mathbb{Z}, x^2 + y^2 \neq 0 \\ -\arccos \frac{x}{\sqrt{x^2 + y^2}} + 2\pi k, y < 0, k \in \mathbb{Z} \end{array} \right]. \end{array} \right.$$

Из определения косинуса и синуса следуют формулы перехода от полярной системы координат к правой прямоугольной декартовой:

$$\begin{cases} x = \rho \cos \varphi; \\ y = \rho \sin \varphi. \end{cases}$$

Несложно вывести обратные формулы:

$$\begin{cases} \rho = \sqrt{x^2 + y^2}; \\ \varphi = \begin{bmatrix} \arccos\frac{x}{\sqrt{x^2 + y^2}} + 2\pi k, y \ge 0, k \in \mathbb{Z}, x^2 + y^2 \ne 0 \\ -\arccos\frac{x}{\sqrt{x^2 + y^2}} + 2\pi k, y < 0, k \in \mathbb{Z} \end{cases}$$

Замечание

Далее вместо полярной системы координат будем рисовать правую прямоугольную декартову.

План

- 🕕 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
 - Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

Пусть задано уравнение некоторой кривой $\rho=\rho(\varphi)$. Неравенство $\rho<0$ невозможно (это следует из определения полярной системы координат). Область изменения φ находим из неравенства $\rho(\varphi)\geq 0$.

Пусть задано уравнение некоторой кривой $\rho=\rho(\varphi)$. Неравенство $\rho<0$ невозможно (это следует из определения полярной системы координат). Область изменения φ находим из неравенства $\rho(\varphi)\geq 0$.

Пример: $\rho = \cos \varphi$

Дано: Уравнение некоторой кривой: $\rho = \cos \varphi$.

Найти: Область изменения φ .

Решение: Находим φ из неравенства $\cos \varphi \geq 0$.

Ответ: $\varphi \in [-\frac{\pi}{2} + 2\pi k, \frac{\pi}{2} + 2\pi k]$, где $k \in \mathbb{Z}$.

Пример: $\rho = \cos^2 \varphi$

Дано: Уравнение некоторой кривой: $\rho = \cos^2 \varphi$.

Найти: Область изменения φ .

Решение: Находим φ из неравенства $\cos^2 \varphi \ge 0$.

Ответ: $\varphi \in \mathbb{R}$.

Пример: $\rho = \cos^2 \varphi$

Дано: Уравнение некоторой кривой: $\rho = \cos^2 \varphi$.

Найти: Область изменения φ .

Решение: Находим φ из неравенства $\cos^2 \varphi \geq 0$.

Ответ: $\varphi \in \mathbb{R}$.

Пример: $\rho = \sin \varphi \cos^2 \varphi$

Дано: Уравнение некоторой кривой: $\rho = \sin \varphi \cos^2 \varphi$.

Найти: Область изменения φ .

Решение: Находим φ из неравенства $\sin \varphi \cos^2 \varphi \geq 0$.

1.) $\sin \varphi \ge 0$. 2.) $\cos \varphi = 0$.

Ответ: $\varphi \in [2\pi k, \pi + 2\pi k] \bigcup \{-\frac{\pi}{2} + 2\pi k\}$, где $k \in \mathbb{Z}$.

План

- 🕕 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
 - Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

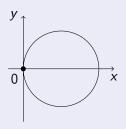
Рассмотрим кривую, заданную уравнением $\rho=\rho(\varphi)$. Предположим, что функция $\rho(\varphi)$ не является нечётной, т. е. её область определения симметрична относительно нуля и для любого φ из области определения выполняется равенство $\rho(\varphi)=\rho(-\varphi)$.

Тогда для любой точки (ρ_0, φ_0) , принадлежащей данной кривой, точка $(\rho_0, -\varphi_0)$ также принадлежит этой кривой.

Следовательно, эта кривая симметрична относительно прямой, содержащей полярную ось.

Пример: $\rho = \cos \varphi$

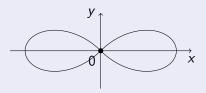
Пусть задана кривая уравнением $ho = \cos arphi$. На плоскости эта кривая будет выглядеть так:



Действительно, кривая симметрична относительно полярной оси.

Пример: $\rho = \cos 2\varphi$

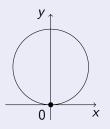
Пусть задана кривая уравнением $\rho = \cos 2\varphi$. На плоскости эта кривая будет выглядеть так:



Действительно, кривая симметрична относительно полярной оси.

Пример: $\rho = \sin \varphi$

Пусть задана кривая уравнением $ho=\sin arphi$. На плоскости эта кривая будет выглядеть так:



Функция $\sin \varphi$ нечётная, и кривая не симметрична относительно полярной оси.

План

- 🕕 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
- Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

Периодичность по φ

Теорема

Пусть задана кривая уравнением $\rho=\rho(\varphi)$ и функция $\rho(\varphi)$ является $\frac{2\pi}{k}$ — периодической по φ , $k\in\mathbb{N}$.

Проведём из полюса k лучей так, чтобы углы между соседними лучами были равны.

Тогда часть кривой, попавшей в один из полученных секторов, совпадёт с частью кривой, попавшей в соседний сектор, при повороте вокруг полюса на угол $\frac{2\pi}{k}$.

Теорема

Пусть задана кривая уравнением $\rho=\rho(\varphi)$ и функция $\rho(\varphi)$ является $\frac{2\pi}{k}$ — периодической по $\varphi,\ k\in\mathbb{N}.$

Проведём из полюса k лучей так, чтобы углы между соседними лучами были равны.

Тогда часть кривой, попавшей в один из полученных секторов, совпадёт с частью кривой, попавшей в соседний сектор, при повороте вокруг полюса на угол $\frac{2\pi}{k}$.

Доказательство

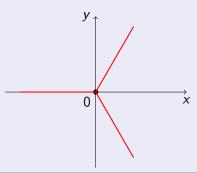
Утверждение теоремы следует из $\frac{2\pi}{k}$ – периодичности функции $\rho(\varphi)$. Действительно, пусть некоторая точка (ρ_0, φ_0) принадлежит кривой, тогда точки вида $(\rho_0, \varphi_0 + \frac{2\pi}{k}n)$, $n \in \mathbb{N}$ также принадлежат кривой.

Пример: $\rho = \cos 3\varphi$

Построим кривую, заданную уравнением $\rho = \cos 3\varphi$.

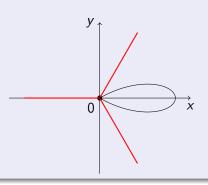
Пример: $\rho = \cos 3\varphi$

Функция $\cos 3\varphi$ является $\frac{2\pi}{3}$ – периодической. Проведем из полюса три луча: $\varphi=\frac{\pi}{3}$, $\varphi=\pi$, $\varphi=\frac{5\pi}{3}$.



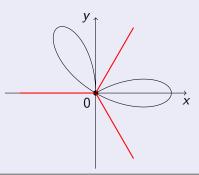
Пример: $\rho = \cos 3\varphi$

Построим по точкам часть кривой в секторе $-\frac{\pi}{3} \leq \varphi \leq \frac{\pi}{3}.$



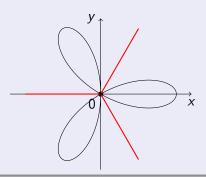
Пример: $\rho = \cos 3\varphi$

Теперь поворотом вокруг полюса на $\frac{2\pi}{3}$ построим часть кривой в секторе $\frac{\pi}{3} \leq \varphi \leq \pi$.



Пример: $\rho = \cos 3\varphi$

И поворотом вокруг полюса на $\frac{4\pi}{3}$ построим часть кривой в секторе $\pi \leq \varphi \leq \frac{5\pi}{3}$.

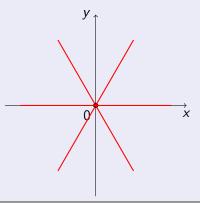


Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Построим кривую, заданную уравнением $ho = \sin(6\varphi - \frac{\pi}{2})$.

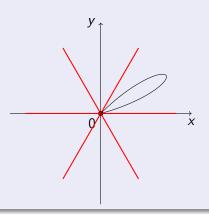
Пример: $\rho = \sin(6\varphi - \frac{\pi}{2})$

Функция $\sin(6\varphi-\frac{\pi}{2})$ является $\frac{\pi}{3}$ – периодической. Проведем из полюса шесть лучей: $\varphi=0$, $\varphi=\frac{\pi}{3}$, $\varphi=\frac{2\pi}{3}$, $\varphi=\pi$, $\varphi=\frac{4\pi}{3}$, $\varphi=\frac{5\pi}{3}$.



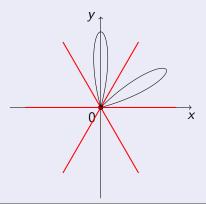
Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Построим по точкам часть кривой в секторе $0 \leq \varphi \leq \frac{\pi}{3}$.



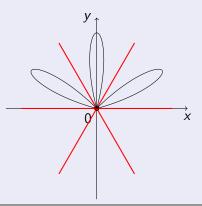
Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Теперь поворотом вокруг полюса на $\frac{\pi}{3}$ построим часть кривой в секторе $\frac{\pi}{3} \leq \varphi \leq \frac{2\pi}{3}$.



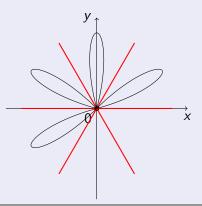
Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Поворотом вокруг полюса на $\frac{2\pi}{3}$ построим часть кривой в секторе $\frac{2\pi}{3} \leq \varphi \leq \pi$.



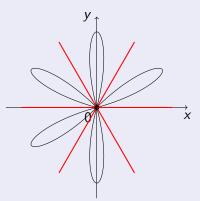
Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Поворотом вокруг полюса на π построим часть кривой в секторе $\pi \leq \varphi \leq \frac{4\pi}{3}.$



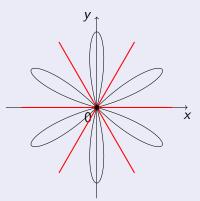
Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

Поворотом вокруг полюса на $\frac{4\pi}{3}$ построим часть кривой в секторе $\frac{4\pi}{3} \leq \varphi \leq \frac{5\pi}{3}.$



Пример:
$$\rho = \sin(6\varphi - \frac{\pi}{2})$$

И поворотом вокруг полюса на $\frac{5\pi}{3}$ построим часть кривой в секторе $\frac{5\pi}{3} \leq \varphi \leq 2\pi$.



План

- 🕕 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
 - Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- ③ Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых

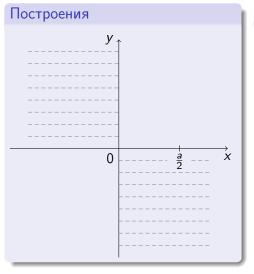
Алгоритм построения кривой

Алгоритм

- 1. Определить область изменения φ и «выбросить» секторы, в котрых $\rho < 0$.
- 2. Определить является ли функция $ho(\varphi)$ периодической. Если да, то строить будем часть кривой в секторе, который содержит луч $\varphi=0$. Если такого сектора нет, то в том который выше луча $\varphi=0$.
- 3. Определить является ли функция $\rho(\varphi)$ чётной. Если да, то строить будем часть кривой в верхней полуплоскости.
- 4. Построить по точкам часть кривой в секторе, найденном в п.1-3.
- 5. Пользуясь свойствами чётности и периодичности, полностью достроить кривую.

План

- 🕕 Полярная система координат
 - Определение полярной системы координат
 - Построение точки в полярной системе координат
 - Связь полярной и декартовой систем координат
 - Некоторые свойства кривых, заданных в полярной системе координат
 - Область изменения угла
 - Чётность по углу
 - Периодичность по углу
- Построение кривых в полярной системе координат
 - Алгоритм построения кривой
 - Примеры построения кривых



Пояснения

1. Область изменения φ найдём из неравенства $a\sin 2\varphi \geq 0 \iff \sin 2\varphi \geq 0 \iff \pi k \leq \varphi \leq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$ Теперь «выбросим» ненужные сектора (заштрихуем их).

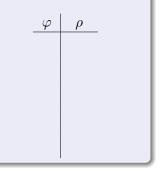
Пояснения

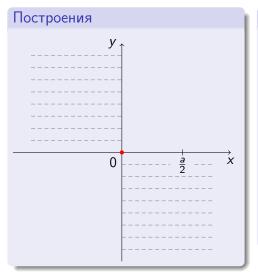
2. Функция $a \sin 2\varphi$ π -периодическая. Будем строить часть кривой в секторе, который выше луча $\varphi = 0$.

Пояснения

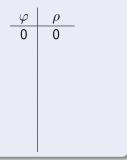
3. Функция $a \sin 2\varphi$ нечётная.

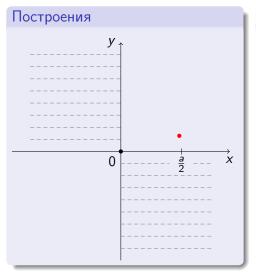
Пояснения





Пояснения



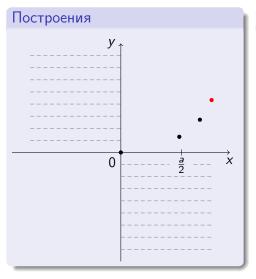


Пояснения

$\frac{\varphi}{0}$	ρ 0	
$\frac{\pi}{12}$	<u>a</u> 2	

Пояснения

ρ	
0	
<u>a</u> 2	
$\frac{a\sqrt{2}}{2}$	

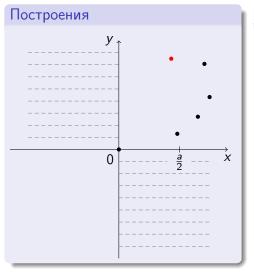


Пояснения

φ	ho
0	0
$\frac{\pi}{12}$	<u>a</u> 2
$\frac{\pi}{8}$	$\frac{a\sqrt{2}}{2}$
$\frac{\pi}{6}$	$\frac{a\sqrt{3}}{2}$

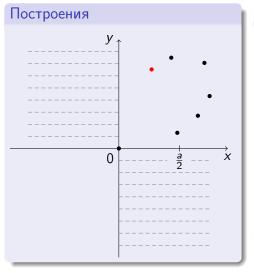
Пояснения

φ	ρ
0	0
$\frac{\pi}{12}$	<u>a</u> 2
$\frac{\pi}{8}$	$\frac{a\sqrt{2}}{2}$
$\frac{\pi}{6}$ $\frac{\pi}{4}$	$\frac{a\sqrt{3}}{2}$
$\frac{\pi}{4}$	a



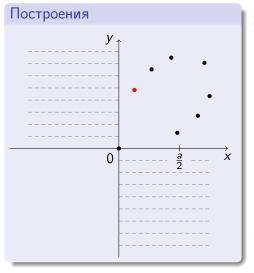
Пояснения

φ	ρ
$\frac{\pi}{3}$	$\frac{a\sqrt{3}}{2}$



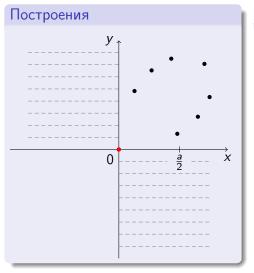
Пояснения

φ	ρ
$\frac{\pi}{3}$ $\frac{3\pi}{8}$	$\frac{a\sqrt{3}}{2}$ $\frac{a\sqrt{2}}{2}$
8	2



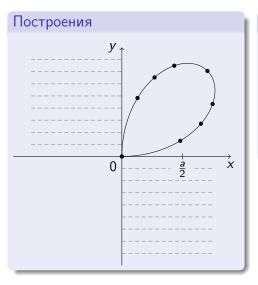
Пояснения

φ	ρ
$\frac{\pi}{3}$	$\frac{a\sqrt{3}}{2}$
$\frac{3\pi}{8}$ $\frac{5\pi}{12}$	$\frac{a\sqrt{2}}{2}$
$\frac{5\pi}{12}$	<u>a</u> 2



Пояснения

φ	ρ	
$\frac{\pi}{3}$	$\frac{a\sqrt{3}}{2}$	
$\frac{3\pi}{8}$ $\frac{5\pi}{12}$	$\frac{a\sqrt{2}}{2}$	
$\frac{5\pi}{12}$	<u>a</u> 2	
$\frac{\pi}{2}$	0	



Пояснения

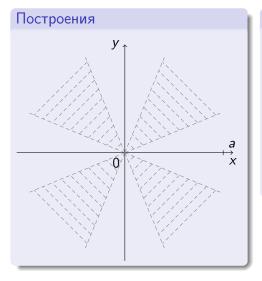
4. Построим по точкам часть кривой в секторе, найденном в п.1-3.

Отмеченные точки соединим плавной кривой.

Пояснения

5. Пользуясь свойством периодичности, полностью достраиваем кривую.

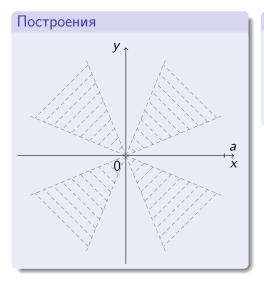
$\rho = a\cos 4\varphi$ (четырёхлистник)



Пояснения

1. Область изменения φ найдём из неравенства $a\cos 4\varphi \geq 0 \iff$ $\cos 4\varphi > 0 \iff$ $-\frac{\pi}{8}+\frac{\pi}{2}k\leq\varphi\leq\frac{\pi}{8}+\frac{\pi}{2}k$, $k \in \mathbb{Z}$. Теперь «выбросим» ненужные сектора (заштрихуем их).

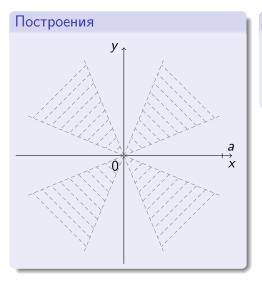
$ho = a\cos 4\varphi$ (четырёхлистник)



Пояснения

2. Функция $a\cos 4\varphi$ $\frac{\pi}{2}$ -периодическая. Будем строить часть кривой в секторе, который пересекает луч $\varphi=0$.

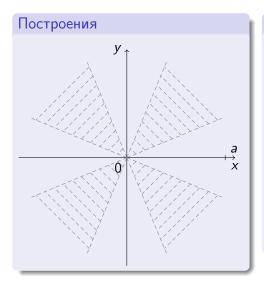
$ho = a\cos 4\varphi$ (четырёхлистник)



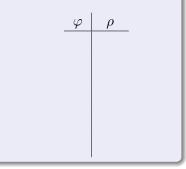
Пояснения

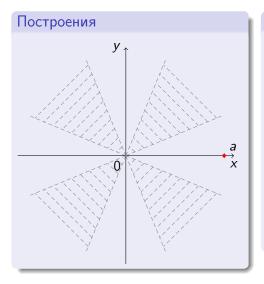
3. Функция $a\cos 4\varphi$ чётная. Будем строить часть кривой в верхней полуплоскости.

$ho = a\cos 4arphi$ (четырёхлистник)

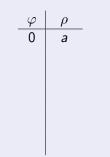


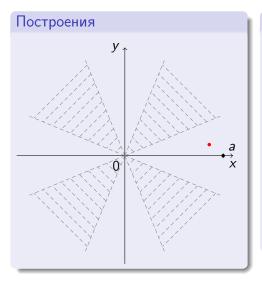
Пояснения





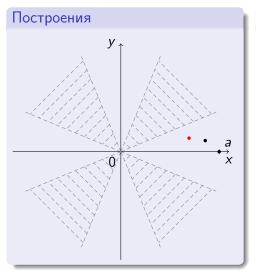
Пояснения





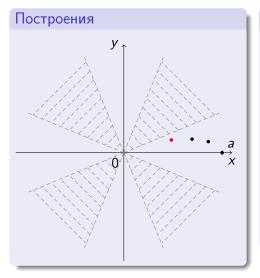
Пояснения

$$\begin{array}{c|c} \varphi & \rho \\ \hline 0 & a \\ \hline \frac{\pi}{24} & \frac{a\sqrt{3}}{2} \end{array}$$



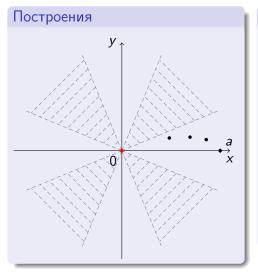
Пояснения

$$\begin{array}{c|c} \varphi & \rho \\ \hline 0 & a \\ \hline \frac{\pi}{24} & \frac{a\sqrt{3}}{2} \\ \frac{\pi}{16} & \frac{a\sqrt{2}}{2} \\ \end{array}$$



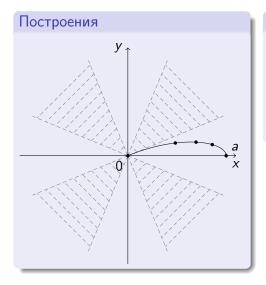
Пояснения

φ	ρ
0	а
$\frac{\pi}{24}$	$\frac{a\sqrt{3}}{2}$
$\frac{\pi}{16}$	$\frac{a\sqrt{2}}{2}$
$\frac{\pi}{12}$	<u>a</u> 2



Пояснения

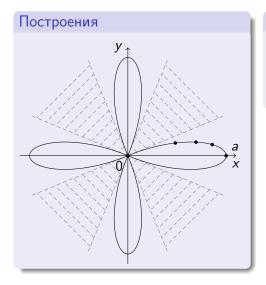
φ	ρ
0	а
$\frac{\pi}{24}$	$\frac{a\sqrt{3}}{2}$
$\frac{\pi}{16}$	$\frac{a\sqrt{2}}{2}$
$\frac{\pi}{12}$	<u>a</u> 2
$\frac{\pi}{8}$	0



Пояснения

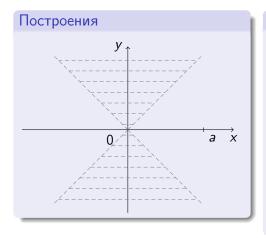
4. Построим по точкам часть кривой в секторе, найденном в п.1-3.

Соединим построенные точки плавной кривой.



Пояснения

 Пользуясь свойствами периодичности и чётности, полностью достраиваем кривую.

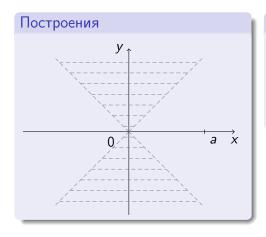


Пояснения

найдём из неравенства $|a|\sqrt{\cos 2arphi} \geq 0. \iff$ $\cos 2arphi \geq 0 \iff$ $-\frac{\pi}{2} + 2\pi k \leq arphi \leq \frac{\pi}{2} + 2\pi k,$ $k \in \mathbb{Z} \iff$ $-\frac{\pi}{4} + \pi k \leq arphi \leq \frac{\pi}{4} + \pi k,$ $k \in \mathbb{Z}$ Теперь «выбросим» ненужные сектора

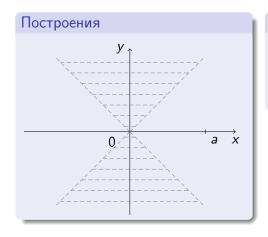
(заштрихуем их).

1. Область изменения φ



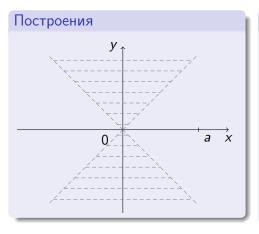
Пояснения

2. Функция $|a|\sqrt{\cos 2\varphi}$ π -периодическая. Будем строить часть кривой в секторе содержащем луч $\varphi=0$.

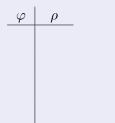


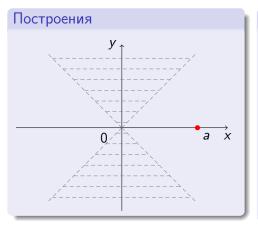
Пояснения

3. Функция $|a|\sqrt{\cos 2\varphi}$ чётная. Будем строить часть кривой в верхней полуплоскости.

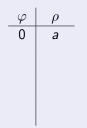


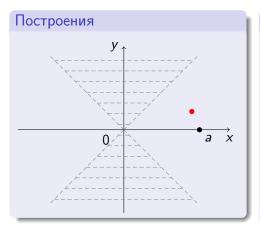
Пояснения



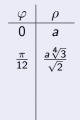


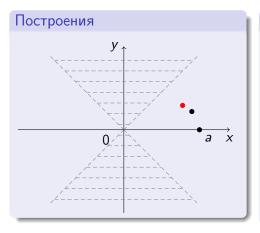
Пояснения





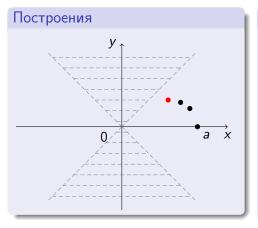
Пояснения





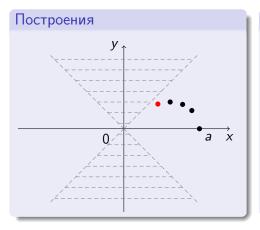
Пояснения

φ	ρ
0	а
$\frac{\pi}{12}$ $\frac{\pi}{8}$	$\frac{a\sqrt[4]{3}}{\sqrt{2}}$ $\frac{a}{\sqrt[4]{2}}$

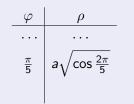


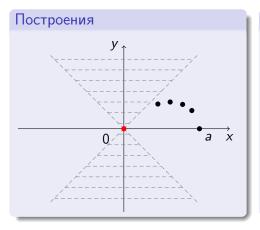
Пояснения

φ	ρ
0	а
$\frac{\pi}{12}$	$\frac{a\sqrt[4]{3}}{\sqrt{2}}$
$\frac{\pi}{8}$	$\frac{a}{\sqrt[4]{2}}$
$\frac{\pi}{6}$	$\frac{a}{\sqrt{2}}$

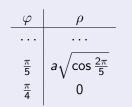


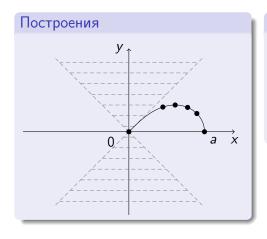
Пояснения





Пояснения

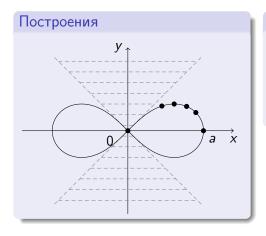




Пояснения

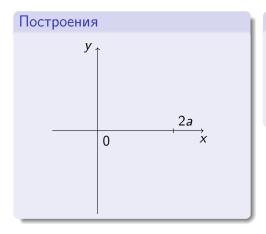
4. Построим по точкам часть кривой в секторе, найденном в п.1-3.

Соединим построенные точки плавной кривой.



Пояснения

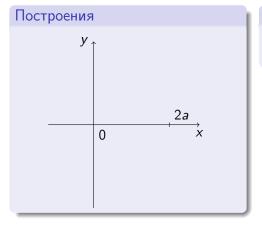
5. Пользуясь свойствами чётности и периодичности, полностью достраиваем кривую.



Пояснения

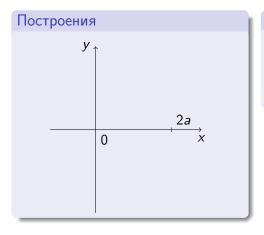
1. Область изменения arphi найдём из неравенства $a(1+\cosarphi)\geq 0 \Longleftrightarrow \cosarphi \geq -1 \Longleftrightarrow arphi \in \mathbb{R}$

$$\rho = a(1 + \cos \varphi)$$
, $a > 0$ (кардиоида)



Пояснения

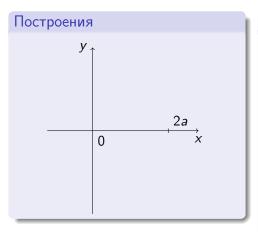
2. Функция $a(1 + \cos \varphi)$ 2π -периодическая.



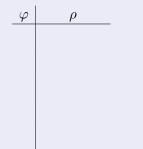
Пояснения

3. Функция $a(1 + \cos \varphi)$ чётная. Будем строить часть кривой в верхней полуплоскости.

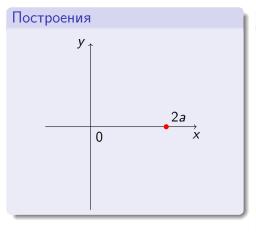
$$\rho = a(1 + \cos \varphi)$$
, $a > 0$ (кардиоида)



Пояснения

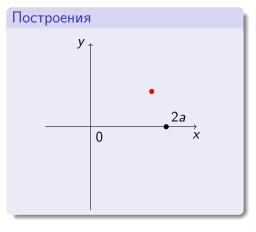


$$\rho = a(1 + \cos \varphi)$$
, $a > 0$ (кардиоида)



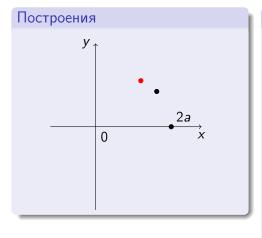
Пояснения

φ	ho	
$\frac{\varphi}{0}$	ρ 2a	



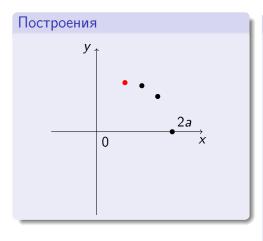
Пояснения

φ	ρ
0	2 <i>a</i>
$\frac{\pi}{6}$	$a(1+\frac{\sqrt{3}}{2})$



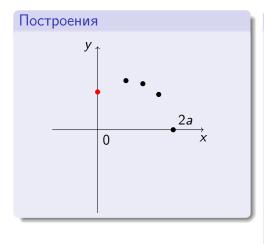
Пояснения

φ	ρ
0	2 <i>a</i>
$\frac{\pi}{6}$	$a(1+\tfrac{\sqrt{3}}{2})$
$\frac{\pi}{4}$	$a(1+\frac{\sqrt{2}}{2})$



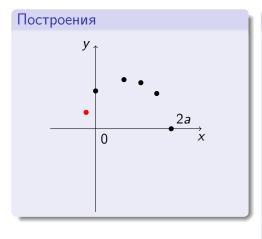
Пояснения

φ	ρ
0	2 <i>a</i>
$\frac{\pi}{6}$	$a(1+\frac{\sqrt{3}}{2})$
$\frac{\pi}{4}$	$a(1+\frac{\sqrt{2}}{2})$
$\frac{\pi}{4}$ $\frac{\pi}{3}$	<u>3a</u> 2



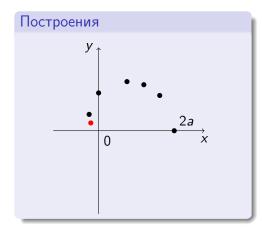
Пояснения

φ	ho
0	2 <i>a</i>
$\frac{\pi}{6}$	$a(1+rac{\sqrt{3}}{2})$
$\frac{\pi}{4}$	$a(1+\frac{\sqrt{2}}{2})$
$\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$	<u>3a</u> 2
$\frac{\pi}{2}$	а

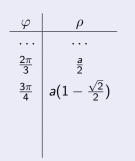


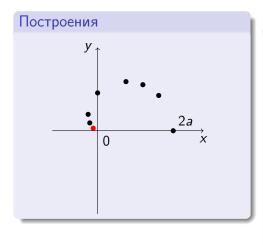
Пояснения

φ	ho	
• • •		
$\frac{2\pi}{3}$	<u>a</u> 2	

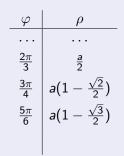


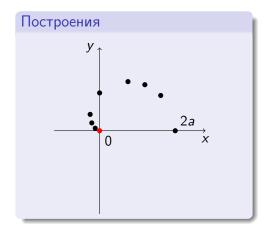
Пояснения





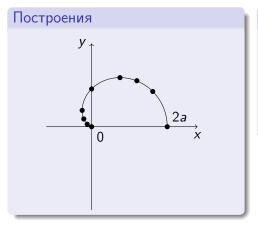
Пояснения





Пояснения

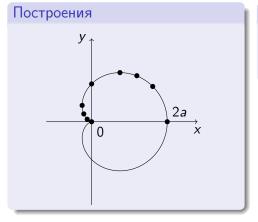
φ	ρ
$\frac{2\pi}{3}$	<u>a</u> 2
$\frac{3\pi}{4}$	$a(1-\frac{\sqrt{2}}{2})$
$\frac{5\pi}{6}$	$a(1-\frac{\sqrt{3}}{2})$
π	0



Пояснения

4. Построим по точкам часть кривой в секторе, найденном в п.1-3.

Соединим построенные точки плавной кривой.



Пояснения

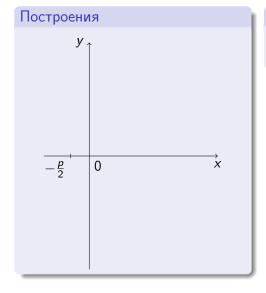
5. Пользуясь свойством чётности, полностью достраиваем кривую.

$$ho = rac{p}{1-\cos arphi}$$
, $p>0$ (парабола)

Пояснения

1. Область изменения φ найдём из неравенства $\frac{P}{1-\cos\varphi} \geq 0 \Longleftrightarrow 1-\cos\varphi > 0 \Longleftrightarrow \cos\varphi < 1 \Longleftrightarrow \varphi \neq 2\pi k$, где $k \in \mathbb{Z}$.

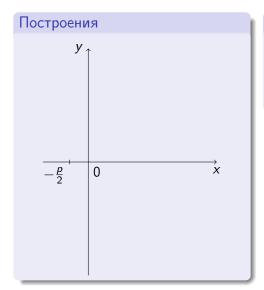
$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



Пояснения

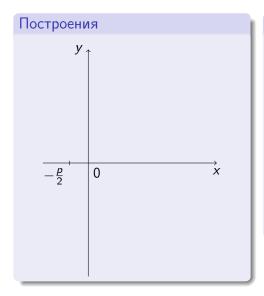
2. Функция $\frac{p}{1-\cos\varphi}$ 2π -периодическая.

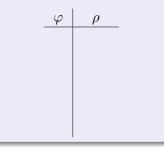
$$ho = rac{p}{1-\cos arphi}$$
, $p>0$ (парабола)



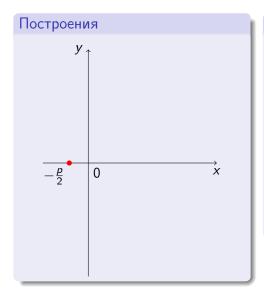
3. Функция $\frac{\rho}{1-\cos\varphi}$ чётная. Будем строить часть кривой в верхней полуплоскости.

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)





$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



$$\begin{array}{c|c} \varphi & \rho \\ \hline \pi & \frac{p}{2} \end{array}$$

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)

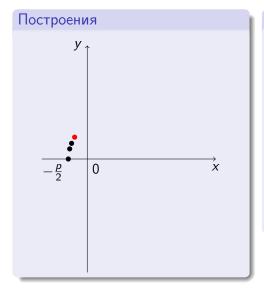


φ	ρ
π	<u>p</u> 2
$\frac{5\pi}{6}$	$\frac{2p}{2+\sqrt{3}}$

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)

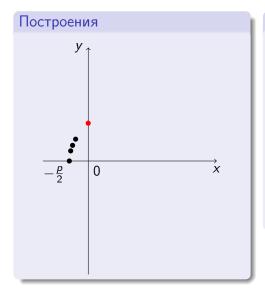
φ	ρ
π	<u>p</u> 2
$\frac{5\pi}{6}$	$\frac{2p}{2+\sqrt{3}}$
$\frac{3\pi}{4}$	$\frac{2p}{2+\sqrt{2}}$

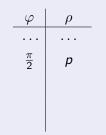
$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



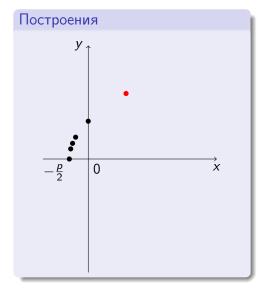
φ	ρ
π	<u>p</u> 2
$\frac{5\pi}{6}$	$\frac{2p}{2+\sqrt{3}}$
$\frac{3\pi}{4}$	$\frac{2p}{2+\sqrt{2}}$
$\frac{2\pi}{3}$	$\frac{2p}{3}$

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



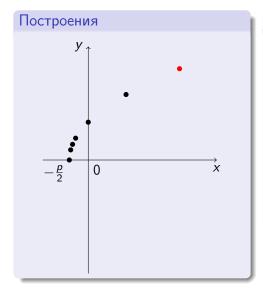


$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



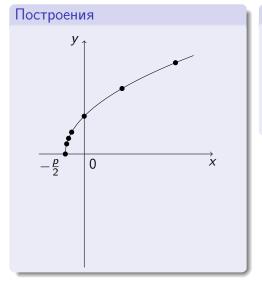
φ	ρ
	• • •
$\frac{\pi}{2}$	р
$\frac{\pi}{3}$	2 <i>p</i>

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



φ	ρ
$\frac{\pi}{2}$	р
$\frac{\pi}{3}$	2 <i>p</i>
$\frac{\pi}{4}$	$\frac{2p}{2-\sqrt{2}}$

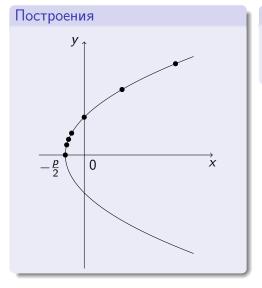
$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



4. Построим по точкам часть кривой в секторе, найденном в п.1-3.

Соединим построенные точки плавной кривой.

$$ho = rac{p}{1-\cosarphi}$$
, $p>0$ (парабола)



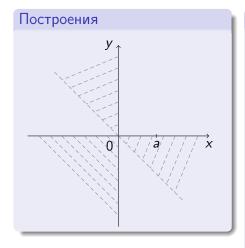
5. Пользуясь свойством чётности, полностью достраиваем кривую.

$$x^3 + y^3 = 3$$
аху, а > 0 (лист Декарта)

Перейдем к полярным координатам. Для этого воспользуемся формулами перехода.

$$\rho^{3}\cos^{3}\varphi + \rho^{3}\sin^{3}\varphi = 3a\rho\cos\varphi\rho\sin\varphi \iff \rho^{3}(\cos^{3}\varphi + \sin^{3}\varphi) = 3a\rho^{2}\cos\varphi\sin\varphi \iff \rho(\cos^{3}\varphi + \sin^{3}\varphi) = 3a\cos\varphi\sin\varphi \iff \rho = \frac{3a\cos\varphi\sin\varphi}{\cos^{3}\varphi + \sin^{3}\varphi}$$

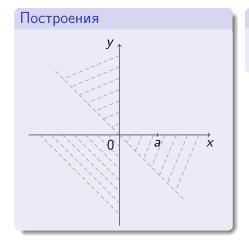
$$ho = rac{3a\cos\varphi\sin\varphi}{\cos^3\omega + \sin^3\omega}$$
, $a>0$ (лист Декарта)



1. Область изменения φ найдём из неравенства $\frac{3a\cos\varphi\sin\varphi}{\cos^3\varphi + \sin^3\varphi} \ge 0 \iff$ $\frac{\cos\varphi\sin\varphi}{(\cos\varphi+\sin\varphi)(1-\cos\varphi\sin\varphi)}\geq 0$ $\frac{\cos\varphi\sin\varphi}{\cos\varphi+\sin\varphi} \ge 0 \iff$ $2\pi k \le \varphi \le \frac{\pi}{2} + 2\pi k$ $\frac{3\pi}{4} + 2\pi k < \varphi \le \pi + 2\pi k$ $\frac{3\pi}{2} + 2\pi k \le \varphi < \frac{7\pi}{4} + 2\pi k$ $k \in \mathbb{Z}$.

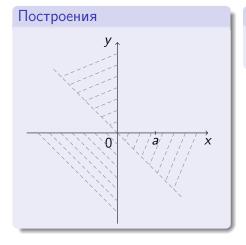
Теперь «выбросим» ненужные сектора (заштрихуем их).

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



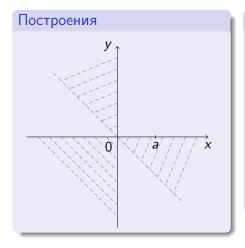
2. Функция $\frac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$ не является периодической.

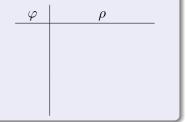
$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



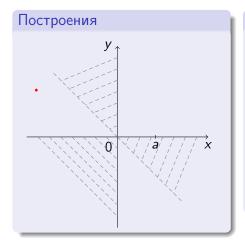
3. Функция $\frac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$ нечётная.

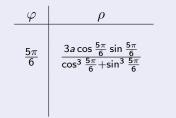
$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



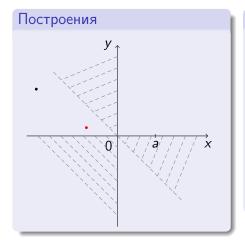


$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



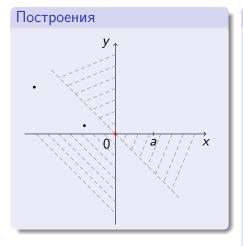


$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



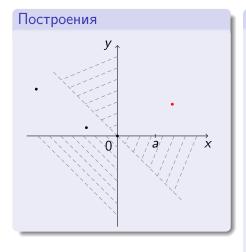
φ	ho
$\frac{5\pi}{6}$	$\frac{3a\cos\frac{5\pi}{6}\sin\frac{5\pi}{6}}{\cos^3\frac{5\pi}{6} + \sin^3\frac{5\pi}{6}}$
$\frac{11\pi}{12}$	$\frac{3a\cos\frac{11\pi}{12}\sin\frac{11\pi}{12}}{\cos^3\frac{11\pi}{12} + \sin^3\frac{11\pi}{12}}$

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



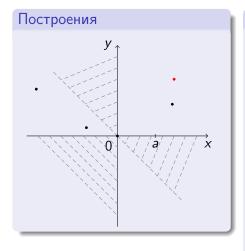
φ	ho	
0	0	

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



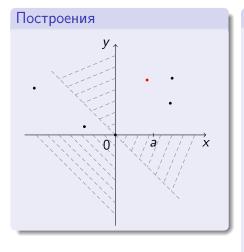
φ	ho
0	0
$\frac{\pi}{6}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



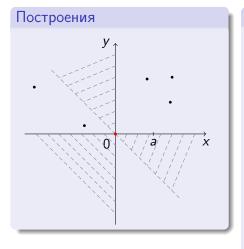
φ	ho
0	0
$\frac{\pi}{6}$ $\frac{\pi}{4}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$ $\frac{3\sqrt{2}a}{2}$

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



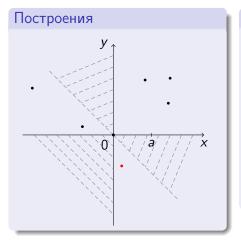
φ	ρ
0	0
$\frac{\pi}{6}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$
$\frac{\pi}{4}$	$\frac{3\sqrt{2}a}{2}$
$\frac{\pi}{3}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



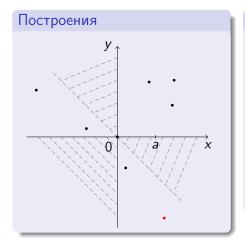
φ	ρ
0	0
$\frac{\pi}{6}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$
$\frac{\pi}{4}$	$\frac{3\sqrt{2}a}{2}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\frac{6\sqrt{3}a}{3\sqrt{3}+1}$
$\frac{\pi}{2}$	0

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



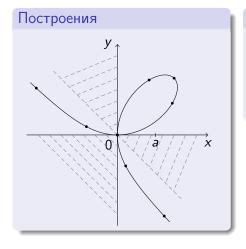
φ	ρ
$\frac{19\pi}{12}$	$\frac{3a\cos\frac{19\pi}{12}\sin\frac{19\pi}{12}}{\cos^3\frac{19\pi}{12} + \sin^3\frac{19\pi}{12}}$

$$ho=rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$$
, $a>0$ (лист Декарта)



φ	ρ
$\frac{19\pi}{12}$	$\frac{3a\cos\frac{19\pi}{12}\sin\frac{19\pi}{12}}{\cos^3\frac{19\pi}{12} + \sin^3\frac{19\pi}{12}}$
$\frac{5\pi}{3}$	$\frac{3a\cos\frac{5\pi}{3}\sin\frac{5\pi}{3}}{\cos^{3}\frac{5\pi}{3} + \sin^{3}\frac{5\pi}{3}}$

$ho = rac{3a\cos\varphi\sin\varphi}{\cos^3\varphi+\sin^3\varphi}$, a>0 (лист Декарта)



Пояснения

4. Построим по точкам всю кривую.

Соединим построенные точки плавной кривой.

Источники

- Bикипедия, свободная энциклопедия. http://en.wikipedia.org и http://ru.wikipedia.org.
- ДЕМИДОВИЧ Б.П. Сборник задач и упражнений по математическому анализу. — М.: «ЧеРо», 1997.
- № ЛЯШКО И.И. И ДР. Справочное пособие по высшей математике. Т.1 М.: «Едиторнал УРСС», 2001.
- № КУДРЯВЦЕВ Л.Д. Краткий курс математического анализа. Т.1 — М.: «ФИЗМАТЛИТ», 2005.