5-е занятие. Замена переменных Матем. анализ, прикл. матем., 3-й семестр

[3450] Преобразовать уравнение к полярным координатам: $y' = \frac{x + y}{x - u}$.

Вводя новые независимые переменные ξ и η , решить следующие уравнения:

$$3458$$
 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$, если $\xi = x + y$ и $\eta = x - y$.

$$\boxed{3460}$$
 $\mathbf{a}\frac{\partial z}{\partial \mathbf{x}} + \mathbf{b}\frac{\partial z}{\partial \mathbf{y}} = \mathbf{1}$ $(\mathbf{a} \neq \mathbf{0}),$ если $\mathbf{\xi} = \mathbf{x}$ и $\mathbf{\eta} = \mathbf{y} - \mathbf{b}\mathbf{z}.$

Принимая ${\bf u}$ и ${\bf v}$ за новые независимые переменные, преобразовать следующие уравнения:

3462
$$xz'_x + \sqrt{1+y^2}z'_y = xy$$
, если $u = \ln x$ и $v = \ln(y + \sqrt{1+y^2})$.

$$3465$$
 $x z'_{x} + y z'_{y} = \frac{x}{z}$, если $u = 2x - z^{2}$ и $v = \frac{y}{z}$.

Сделать замену независимых переменных в следующем выражении:

$$\boxed{3467} \quad (z+e^{x})z'_{x}+(z+e^{y})z'_{y}-(z^{2}-e^{x+y}), \quad \xi=y+ze^{-x}, \quad \eta=x+ze^{-y}.$$

Преобразовать следующие выражения к полярным координатам $(x=r\cos\phi,y=r\sin\phi)$:

$$\boxed{3481} \quad w = xu_y' - yu_x'.$$

$$\boxed{3484} \quad w = u''_{xx} + u''_{yy}.$$

Приняв ${\mathfrak u}$ и ${\mathfrak v}$ за новые переменные, преобразовать следующие уравнения:

$$\boxed{3489}$$
 $2z''_{xx} + z''_{xy} - z''_{yy} + z'_{x} + z'_{y} = 0$, если $u = x + 2y + 2$, $v = x - y - 1$.

[3493]
$$z''_{xx} + z''_{yy} + m^2 z = 0$$
, если $x = e^y \cos v$, $y = e^y \sin v$.

[3495]
$$x^2 z''_{xx} - y^2 z''_{yy} = 0$$
, если $u = xy$, $v = \frac{x}{y}$.

[3499]
$$xz''_{xx} - yz''_{uu} = 0$$
, если $x = (u + v)^2$, $y = (u - v)^2$.

Домашнее задание № 5

Матем. анализ, прикл. матем., 3-й семестр

Преобразовать к полярным координатам r и φ , полагая $x = r \cos \varphi$, $y = r \sin \varphi$, следующие уравнения:

$$\boxed{3451} \quad (xy' - y)^2 = 2xy(1 + y'^2). \qquad \boxed{3452} \quad (x^2 + y^2)^2y'' = (x + yy')^3.$$

Вводя новые независимые переменные ξ и η, решить следующие уравнения:

$$3459$$
 $y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0$, если $\xi = x$ и $\eta = x^2 + y^2$.

$$3461$$
 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$, если $\xi = x$ и $\eta = \frac{y}{x}$.

Принимая ${\bf u}$ и ${\bf v}$ за новые независимые переменные, преобразовать следующие уравнения:

[3463]
$$(x+y)z'_x - (x-y)z'_y = 0$$
, если $u = \ln \sqrt{x^2 + y^2}$, $v = \arctan \frac{y}{x}$.

[3464]
$$xz'_x + yz'_y = z + \sqrt{x^2 + y^2 + z^2}$$
, если $u = \frac{y}{x}$, $v = z + \sqrt{x^2 + y^2 + z^2}$.

$$\boxed{3466}$$
 $(x+z)z_x' + (y+z)z_y' = x+y+z,$ если $u=x+z$ и $v=y+z.$

[3469] В уравнении
$$u_x' + u_y' + u_z' = 0$$
 положить $\xi = x$, $\eta = y - x$, $\zeta = z - x$.

Сделать замену независимых переменных в следующем выражении:

3468
$$(z'_{x})^{2} + (z'_{y})^{2}, \quad x = uv, \quad y = \frac{1}{2}(u^{2} - v^{2}).$$

Преобразовать следующие выражения к полярным координатам ($\mathbf{x} = \mathbf{r}\cos\phi$, $\mathbf{y} = \mathbf{r}\sin\phi$):

3482
$$w = xu'_x + yu'_y$$
. 3483 $w = (u'_x)^2 + (u'_y)^2$.

3485
$$w = x^2 u''_{xx} + 2xy u''_{xy} + y^2 u''_{yy}.$$

Приняв $\mathfrak u$ и $\mathfrak v$ за новые переменные, преобразовать следующие уравнения:

3490
$$(1+x^2)z_{xx}'' + (1+y^2)z_{yy}'' + xz_x' + yz_y',$$

если
$$u = \ln(x + \sqrt{1 + x^2}), v = \ln(y + \sqrt{1 + y^2})$$

[3492]
$$z''_{xx} + z''_{yy} = 0$$
, если $u = \frac{x}{x^2 + y^2}$, $v = -\frac{y}{x^2 + y^2}$.

$$\boxed{3494}$$
 $z''_{xx} - y z''_{yy} = \frac{1}{2} z'_{y}$ $(y > 0)$, если $u = x - 2\sqrt{y}$, $v = x + 2\sqrt{y}$.

3497
$$xyz''_{xx} - (x^2 + y^2)z''_{xy} + xyz''_{yy} + yz'_x + xz'_y = 0,$$

если
$$u = \frac{1}{2}(x^2 + y^2), \quad v = xy.$$